Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
PLoS Pathog ; 20(3): e1012072, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452154

RESUMO

Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Camundongos , Animais , Streptococcus pyogenes/metabolismo , Estreptolisinas/genética , Estreptolisinas/metabolismo , Camundongos Transgênicos , Infecções Estreptocócicas/metabolismo , Proteínas de Bactérias/metabolismo , Nasofaringe
2.
J Bacteriol ; 206(3): e0044723, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334326

RESUMO

Menstrual toxic shock syndrome (mTSS) is a rare but life-threatening disease associated with the use of high-absorbency tampons. The production of the Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) superantigen is involved in nearly all cases of mTSS and is tightly controlled by regulators responding to the environment. In the prototypic mTSS strain S. aureus MN8, the major repressor of TSST-1 is the carbon catabolite protein A (CcpA), which responds to glucose concentrations in the vaginal tract. Healthy vaginal Lactobacillus species also depend on glucose for both growth and acidification of the vaginal environment through lactic acid production. We hypothesized that interactions between the vaginal microbiota [herein referred to as community state types (CSTs)] and S. aureus MN8 depend on environmental cues and that these interactions subsequently affect TSST-1 production. Using S. aureus MN8 ΔccpA growing in various glucose concentrations, we demonstrate that the supernatants from different CSTs grown in vaginally defined medium (VDM) could significantly decrease tst expression. When co-culturing CST species with MN8 ∆ccpA, we show that Lactobacillus jensenii completely inhibits TSST-1 production in conditions mimicking healthy menstruation or mTSS. Finally, we show that growing S. aureus in "unhealthy" or "transitional" CST supernatants results in higher interleukin 2 (IL-2) production from T cells. These findings suggest that dysbiotic CSTs may encourage TSST-1 production in the vaginal tract and further indicate that the CSTs are likely important for the protection from mTSS.IMPORTANCEIn this study, we investigate the impact of the vaginal microbiota against Staphylococcus aureus in conditions mimicking the vaginal environment at various stages of the menstrual cycle. We demonstrate that Lactobacillus jensenii can inhibit toxic shock syndrome toxin-1 (TSST-1) production, suggesting the potential for probiotic activity in treating and preventing menstrual toxic shock syndrome (mTSS). On the other side of the spectrum, "unhealthy" or "transient" bacteria such as Gardnerella vaginalis and Lactobacillus iners support more TSST-1 production by S. aureus, suggesting that community state types are important in the development of mTSS. This study sets forward a model for examining contact-independent interactions between pathogenic bacteria and the vaginal microbiota. It also demonstrates the necessity of replicating the environment when studying one as dynamic as the vagina.


Assuntos
Toxinas Bacterianas , Lactobacillus , Choque Séptico , Infecções Estafilocócicas , Feminino , Humanos , Staphylococcus aureus/metabolismo , Choque Séptico/microbiologia , Sinais (Psicologia) , Enterotoxinas/metabolismo , Superantígenos/metabolismo , Vagina/microbiologia , Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Glucose/metabolismo
3.
Trends Microbiol ; 32(3): 228-230, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182522

RESUMO

Staphylococcus aureus is a proficient colonizer and opportunistic pathogen which can lead to vaginal dysbiosis, aerobic vaginitis, or life-threatening menstrual toxic shock syndrome. Here we explore the complex but underappreciated interactions that S. aureus may impose on the vaginal environment leading to additional disease outcomes.


Assuntos
Toxinas Bacterianas , Microbiota , Infecções Estafilocócicas , Feminino , Humanos , Enterotoxinas , Staphylococcus aureus , Superantígenos
4.
Nat Rev Immunol ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225276

RESUMO

Bacterial T cell superantigens (SAgs) are a family of microbial exotoxins that function to activate large numbers of T cells simultaneously. SAgs activate T cells by direct binding and crosslinking of the lateral regions of MHC class II molecules on antigen-presenting cells with T cell receptors (TCRs) on T cells; these interactions alter the normal TCR-peptide-MHC class II architecture to activate T cells in a manner that is independent of the antigen specificity of the TCR. SAgs have well-recognized, central roles in human diseases such as toxic shock syndrome and scarlet fever through their quantitative effects on the T cell response; in addition, numerous other consequences of SAg-driven T cell activation are now being recognized, including direct roles in the pathogenesis of endocarditis, bloodstream infections, skin disease and pharyngitis. In this Review, we summarize the expanding family of bacterial SAgs and how these toxins can engage highly diverse adaptive immune receptors. We highlight recent findings regarding how SAg-driven manipulation of the adaptive immune response may operate in multiple human diseases, as well as contributing to the biology and life cycle of SAg-producing bacterial pathogens.

5.
Mol Microbiol ; 120(3): 425-438, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37501506

RESUMO

In Staphylococcus aureus, genes that should confer the capacity to metabolize fatty acids by ß-oxidation occur in the fadXDEBA locus, but their function has not been elucidated. Previously, incorporation into phospholipid through the fatty acid kinase FakA pathway was thought to be the only option available for S. aureus to metabolize exogenous saturated fatty acids. We now find that in S. aureus USA300, a fadX::lux reporter was repressed by glucose and induced by palmitic acid but not stearic acid, while in USA300ΔfakA basal expression was significantly elevated, and enhanced in response to both fatty acids. When cultures were supplemented with palmitic acid, palmitoyl-CoA representing the first metabolite in the ß-oxidation pathway was detected in USA300, but not in a fadXDEBA deletion mutant USA300Δfad, which relative to USA300 exhibited increased incorporation of palmitic acid into phospholipid accompanied by a rapid loss of viability. USA300Δfad also exhibited significantly reduced viability in a murine tissue abscess infection model. Our data are consistent with FakA-mediated incorporation of fatty acids into phospholipid as a preferred pathway for metabolism of exogenous fatty acids, while the fad locus is critical for metabolism of palmitic acid, which is the most abundant free fatty acid in human plasma.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Animais , Camundongos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ácido Palmítico/metabolismo , Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo
6.
PLoS Pathog ; 18(11): e1011013, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36449535

RESUMO

Streptococcus pyogenes is a globally prominent human-specific pathogen responsible for an enormous burden of human illnesses, including >600 million pharyngeal and >100 million skin infections each year. Despite intensive efforts that focus on invasive indications, much remains unknown about this bacterium in its natural state during colonization of the nasopharynx and skin. Using acute experimental infection models in HLA-transgenic mice, we evaluated how the hyaluronic acid (HA) capsule contributes to S. pyogenes MGAS8232 infection within these limited biological niches. Herein, we demonstrate that HA capsule expression promotes bacterial burden in murine nasal turbinates and skin lesions by resisting neutrophil-mediated killing. HA capsule production is encoded by the hasABC operon and compared to wildtype S. pyogenes infections, mice infected with a ΔhasA mutant exhibited over a 1000-fold CFU reduction at 48-hours post-nasal challenge, and a 10,000-fold CFU reduction from skin lesions 72-hours post-skin challenge. HA capsule expression contributed substantially to skin lesion size development following subdermal inoculations. In the absence of capsule expression, S. pyogenes revealed drastically impeded growth in whole human blood and increased susceptibility to killing by isolated neutrophils ex vivo, highlighting its important role in resisting phagocytosis. Furthermore, we establish that neutrophil depletion in mice recovered the reduced burden by the ΔhasA mutant in both the nasopharynx and skin. Together, this work confirms that the HA capsule is a key virulence determinant during acute infections by S. pyogenes and demonstrates that its predominant function is to protect S. pyogenes against neutrophil-mediated killing.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Camundongos , Humanos , Animais , Streptococcus pyogenes/metabolismo , Ácido Hialurônico/metabolismo , Neutrófilos/patologia , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Infecções Estreptocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Camundongos Transgênicos
7.
Infect Immun ; 90(10): e0009922, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069592

RESUMO

Coagulase-negative staphylococci (CoNS) are frequently commensal bacteria that rarely cause disease in mammals. Staphylococcus lugdunensis is an exceptional CoNS that causes disease in humans similar to virulent Staphylococcus aureus, but the factors that enhance the virulence of this bacterium remain ill defined. Here, we used random transposon insertion mutagenesis to identify the agr quorum sensing system as a regulator of hemolysins in S. lugdunensis. Using RNA sequencing (RNA-seq), we revealed that agr regulates dozens of genes, including hemolytic S. lugdunensis synergistic hemolysins (SLUSH) peptides and the protease lugdulysin. A murine bacteremia model was used to show that mice infected systemically with wild-type S. lugdunensis do not show overt signs of disease despite there being high numbers of bacteria in the livers and kidneys of mice. Moreover, proliferation of the agr mutant in these organs was no different from that of the wild-type strain, leaving the role of the SLUSH peptides and the metalloprotease lugdulysin in pathogenesis still unclear. Nonetheless, the tropism of S. lugdunensis for humans led us to investigate the role of virulence factors in other ways. We show that agr-regulated effectors, but not SLUSH or lugdulysin alone, are important for S. lugdunensis survival in whole human blood. Moreover, we demonstrate that Agr contributes to survival of S. lugdunensis during encounters with murine and primary human macrophages. These findings demonstrate that, in S. lugdunensis, Agr regulates expression of virulence factors and is required for resistance to host innate antimicrobial defenses. This study therefore provides insight into strategies that this Staphylococcus species uses to cause disease.


Assuntos
Infecções Estafilocócicas , Staphylococcus lugdunensis , Humanos , Camundongos , Animais , Staphylococcus lugdunensis/genética , Proteínas Hemolisinas/genética , Coagulase , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética , Metaloproteases , Peptídeos , Imunidade Inata , Proteínas de Bactérias/genética , Mamíferos
8.
J Bacteriol ; 204(10): e0026922, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36106854

RESUMO

Staphylococcus aureus chronically colonizes up to 30% of the human population on the skin or mucous membranes, including the nasal tract or vaginal canal. While colonization is often benign, this bacterium also has the capability to cause serious infections. Menstrual toxic shock syndrome (mTSS) is a serious toxinosis associated with improper use of tampons, which can induce an environment that is favorable to the production of the superantigen known as toxic shock syndrome toxin-1 (TSST-1). To better understand environmental signaling that influences TSST-1 production, we analyzed expression in the prototype mTSS strain S. aureus MN8. Using transcriptional and protein-based analysis in two niche-related media, we observed that TSST-1 expression was significantly higher in synthetic nasal medium (SNM) than in vaginally defined medium (VDM). One major divergence in medium composition was high glucose concentration in VDM. The glucose-dependent virulence regulator gene ccpA was deleted in MN8, and, compared with wild-type MN8, we observed increased TSST-1 expression in the ΔccpA mutant when grown in VDM, suggesting that TSST-1 is repressed by catabolite control protein A (CcpA) in the vaginal environment. We were able to relieve CcpA-mediated repression by modifying the glucose level in vaginal conditions, confirming that changes in nutritional conditions contribute to the overexpression of TSST-1 that can lead to mTSS. We also compared CcpA-mediated repression to other key regulators of tst, finding that CcpA regulation is dominant compared to other characterized regulatory mechanisms. This study underlines the importance of environmental signaling for S. aureus pathogenesis in the context of mTSS. IMPORTANCE Menstrual toxic shock syndrome (mTSS) is caused by strains of Staphylococcus aureus that overproduce a toxin known as toxic shock syndrome toxin-1 (TSST-1). This work studied how glucose levels in a model vaginal environment could influence the amount of TSST-1 that is produced by S. aureus. We found that high levels of glucose repress TSST-1 production, and this is done by a regulatory protein called catabolite control protein A (CcpA). The research also demonstrated that, compared with other regulatory proteins, the CcpA regulator appears to be the most important for maintaining low levels of TSST-1 in the vaginal environment, and this information helps to understand how changes in the vaginal environmental can lead to mTSS.


Assuntos
Choque Séptico , Infecções Estafilocócicas , Feminino , Humanos , Staphylococcus aureus/metabolismo , Proteína Estafilocócica A/metabolismo , Choque Séptico/microbiologia , Glucose/metabolismo , Superantígenos/genética , Superantígenos/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Infecções Estafilocócicas/microbiologia , Meios de Cultura
9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165181

RESUMO

Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.


Assuntos
Interferon gama/imunologia , Infecções Estafilocócicas/imunologia , Superantígenos/imunologia , Animais , Bacteriemia , Enterotoxinas/imunologia , Exotoxinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Staphylococcus aureus/patogenicidade , Linfócitos T/imunologia , Fatores de Virulência/imunologia
10.
PLoS Pathog ; 17(12): e1010097, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34969060

RESUMO

Streptococcus pyogenes (group A Streptococcus) is a globally disseminated and human-adapted bacterial pathogen that causes a wide range of infections, including scarlet fever. Scarlet fever is a toxin-mediated disease characterized by the formation of an erythematous, sandpaper-like rash that typically occurs in children aged 5 to 15. This infectious disease is caused by toxins called superantigens, a family of highly potent immunomodulators. Although scarlet fever had largely declined in both prevalence and severity since the late 19th century, outbreaks have now reemerged in multiple geographical regions over the past decade. Here, we review recent findings that address the role of superantigens in promoting a fitness advantage for S. pyogenes within human populations and discuss how superantigens may be suitable targets for vaccination strategies.


Assuntos
Antígenos de Bactérias/imunologia , Escarlatina/imunologia , Streptococcus pyogenes/imunologia , Superantígenos/imunologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino
11.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33705359

RESUMO

Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory syndrome associated with SARS-CoV-2 infection, shares clinical features with toxic shock syndrome, which is triggered by bacterial superantigens. Superantigen specificity for different Vß chains results in Vß skewing, whereby T cells with specific Vß chains and diverse antigen specificity are overrepresented in the T cell receptor (TCR) repertoire. Here, we characterized the TCR repertoire of MIS-C patients and found a profound expansion of TCRß variable gene 11-2 (TRBV11-2), with up to 24% of clonal T cell space occupied by TRBV11-2 T cells, which correlated with MIS-C severity and serum cytokine levels. Analysis of TRBJ gene usage and complementarity-determining region 3 (CDR3) length distribution of MIS-C expanded TRBV11-2 clones revealed extensive junctional diversity. Patients with TRBV11-2 expansion shared HLA class I alleles A02, B35, and C04, indicating what we believe is a novel mechanism for CDR3-independent T cell expansion. In silico modeling indicated that polyacidic residues in the Vß chain encoded by TRBV11-2 (Vß21.3) strongly interact with the superantigen-like motif of SARS-CoV-2 spike glycoprotein, suggesting that unprocessed SARS-CoV-2 spike may directly mediate TRBV11-2 expansion. Overall, our data indicate that a CDR3-independent interaction between SARS-CoV-2 spike and TCR leads to T cell expansion and possibly activation, which may account for the clinical presentation of MIS-C.


Assuntos
COVID-19/imunologia , Regiões Determinantes de Complementaridade/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Linfócitos T/imunologia , COVID-19/genética , Criança , Regiões Determinantes de Complementaridade/genética , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Masculino , Receptores de Antígenos de Linfócitos T alfa-beta/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Síndrome de Resposta Inflamatória Sistêmica/genética
12.
Nat Commun ; 11(1): 5018, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024089

RESUMO

The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins.


Assuntos
Exotoxinas/metabolismo , Prófagos/genética , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/virologia , Animais , Proteínas de Bactérias/farmacologia , Linhagem Celular , Eritrócitos/efeitos dos fármacos , Exotoxinas/genética , Feminino , Glutationa/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Faringe/citologia , Escarlatina/epidemiologia , Escarlatina/microbiologia , Streptococcus pyogenes/genética , Estreptolisinas/farmacologia , Superantígenos/genética , Superantígenos/metabolismo
13.
mBio ; 11(5)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109757

RESUMO

Staphylococcal superantigens (SAgs) are a family of secreted toxins that stimulate T cell activation and are associated with an array of diseases in humans and livestock. Most SAgs produced by Staphylococcus aureus are encoded by mobile genetic elements, such as pathogenicity islands, bacteriophages, and plasmids, in a strain-dependent manner. Here, we carried out a population genomic analysis of >800 staphylococcal isolates representing the breadth of S. aureus diversity to investigate the distribution of all 26 identified SAg genes. Up to 14 SAg genes were identified per isolate with the most common gene selw (encoding a putative SAg, SElW) identified in 97% of isolates. Most isolates (62.5%) have a full-length open reading frame of selw with an alternative TTG start codon that may have precluded functional characterization of SElW to date. Here, we demonstrate that S. aureus uses the TTG start codon to translate a potent SAg SElW that induces Vß-specific T cell proliferation, a defining feature of classical SAgs. SElW is the only SAg predicted to be expressed by isolates of the CC398 lineage, an important human and livestock epidemic clone. Deletion of selw in a representative CC398 clinical isolate, S. aureus NM001, resulted in complete loss of T cell mitogenicity in vitro, and in vivo expression of SElW by S. aureus increased the bacterial load in the liver during bloodstream infection of SAg-sensitive HLA-DR4 transgenic mice. Overall, we report the characterization of a novel, highly prevalent, and potent SAg that contributes to the pathogenesis of S. aureus infection.IMPORTANCEStaphylococcus aureus is an important human and animal pathogen associated with an array of diseases, including life-threatening necrotizing pneumonia and infective endocarditis. The success of S. aureus as a pathogen has been linked in part to its ability to manipulate the host immune response through the secretion of toxins and immune evasion molecules. The staphylococcal superantigens (SAgs) have been studied for decades, but their role in S. aureus pathogenesis is not well understood, and an appreciation for how SAgs manipulate the host immune response to promote infection may be crucial for the development of novel intervention strategies. Here, we characterized a widely prevalent, previously cryptic, staphylococcal SAg, SElW, that contributes to the severity of S. aureus infections caused by an important epidemic clone of S. aureus CC398. Our findings add to the understanding of staphylococcal SAg diversity and function and provide new insights into the capacity of S. aureus to cause disease.


Assuntos
Bacteriemia/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Superantígenos/genética , Superantígenos/imunologia , Animais , Carga Bacteriana , Feminino , Deleção de Genes , Genômica , Humanos , Fígado/microbiologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Staphylococcus aureus/imunologia
14.
Proc Natl Acad Sci U S A ; 117(20): 10989-10999, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354997

RESUMO

Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas , Sequência de Bases , Biofilmes , Domínio Catalítico , Modelos Animais de Doenças , Endocardite , Enterotoxinas , Feminino , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Masculino , Modelos Moleculares , Mutação , Oxirredução , Domínios Proteicos , Coelhos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sepse , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Superantígenos , Thermotoga maritima , Virulência/genética , Virulência/fisiologia
15.
PLoS Pathog ; 16(5): e1008393, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433711

RESUMO

Infection with (SAg)-producing bacteria may precede or follow infection with or vaccination against influenza A viruses (IAVs). However, how SAgs alter the breadth of IAV-specific CD8+ T cell (TCD8) responses is unknown. Moreover, whether recall responses mediating heterosubtypic immunity to IAVs are manipulated by SAgs remains unexplored. We employed wild-type (WT) and mutant bacterial SAgs, SAg-sufficient/deficient Staphylococcus aureus strains, and WT, mouse-adapted and reassortant IAV strains in multiple in vivo settings to address the above questions. Contrary to the popular view that SAgs delete or anergize T cells, systemic administration of staphylococcal enterotoxin B (SEB) or Mycoplasma arthritidis mitogen before intraperitoneal IAV immunization enlarged the clonal size of 'select' IAV-specific TCD8 and reshuffled the hierarchical pattern of primary TCD8 responses. This was mechanistically linked to the TCR Vß makeup of the impacted clones rather than their immunodominance status. Importantly, SAg-expanded TCD8 retained their IFN-γ production and cognate cytolytic capacities. The enhancing effect of SEB on immunodominant TCD8 was also evident in primary responses to vaccination with heat-inactivated and live attenuated IAV strains administered intramuscularly and intranasally, respectively. Interestingly, in prime-boost immunization settings, the outcome of SEB administration depended strictly upon the time point at which this SAg was introduced. Accordingly, SEB injection before priming raised CD127highKLRG1low memory precursor frequencies and augmented the anamnestic responses of SEB-binding TCD8. By comparison, introducing SEB before boosting diminished recall responses to IAV-derived epitopes drastically and indiscriminately. This was accompanied by lower Ki67 and higher Fas, LAG-3 and PD-1 levels consistent with a pro-apoptotic and/or exhausted phenotype. Therefore, SAgs can have contrasting impacts on anti-IAV immunity depending on the naïve/memory status and the TCR composition of exposed TCD8. Finally, local administration of SEB or infection with SEB-producing S. aureus enhanced pulmonary TCD8 responses to IAV. Our findings have clear implications for superinfections and prophylactic vaccination.


Assuntos
Memória Imunológica/imunologia , Vírus da Influenza A/imunologia , Superantígenos/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Epitopos/imunologia , Feminino , Humanos , Memória Imunológica/fisiologia , Vírus da Influenza A/metabolismo , Influenza Humana/imunologia , Influenza Humana/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Staphylococcus aureus/imunologia , Superantígenos/fisiologia , Superinfecção/imunologia , Vacinação
16.
Proc Natl Acad Sci U S A ; 116(51): 25923-25931, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772015

RESUMO

Streptococcal toxic shock syndrome (STSS) is a rapidly progressing, life-threatening, systemic reaction to invasive infection caused by group A streptococci (GAS). GAS superantigens are key mediators of STSS through their potent activation of T cells leading to a cytokine storm and consequently vascular leakage, shock, and multiorgan failure. Mucosal-associated invariant T (MAIT) cells recognize MR1-presented antigens derived from microbial riboflavin biosynthesis and mount protective innate-like immune responses against the microbes producing such metabolites. GAS lack de novo riboflavin synthesis, and the role of MAIT cells in STSS has therefore so far been overlooked. Here we have conducted a comprehensive analysis of human MAIT cell responses to GAS, aiming to understand the contribution of MAIT cells to the pathogenesis of STSS. We show that MAIT cells are strongly activated and represent the major T cell source of IFNγ and TNF in the early stages of response to GAS. MAIT cell activation is biphasic with a rapid TCR Vß2-specific, TNF-dominated response to superantigens and a later IL-12- and IL-18-dependent, IFNγ-dominated response to both bacterial cells and secreted factors. Depletion of MAIT cells from PBMC resulted in decreased total production of IFNγ, IL-1ß, IL-2, and TNFß. Peripheral blood MAIT cells in patients with STSS expressed elevated levels of the activation markers CD69, CD25, CD38, and HLA-DR during the acute compared with the convalescent phase. Our data demonstrate that MAIT cells are major contributors to the early cytokine response to GAS, and are therefore likely to contribute to the pathological cytokine storm underlying STSS.


Assuntos
Citocinas/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Choque Séptico/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Adulto , Idoso , Citocinas/sangue , Antígenos HLA-DR/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-2/metabolismo , Linfotoxina-alfa/metabolismo , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Riboflavina/biossíntese , Streptococcus pyogenes/patogenicidade , Superantígenos/metabolismo
18.
PLoS One ; 14(8): e0219777, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31398210

RESUMO

BACKGROUND: Injection drug use-associated endocarditis (IDUaIE) incidence in Ontario has recently been associated with hydromorphone prescribing rates. Staphylococcus aureus causes the majority of cases of IDUaIE in Ontario and across North America. Hydromorphone controlled-release (Hydromorphone-CR) requires a complex technique for injection and therefore provides multiple opportunities for contamination. Hydromorphone-CR contains several excipients, which could enhance staphylococcal survival and increase risk of contaminating the injectate. METHODS: Used injection drug preparation equipment (cookers/filters) was collected from persons who inject drugs (PWID), rinsed with water, and plated on Mannitol salt agar. Bacterial isolates from bacteremic PWID were used to assess the survival of S. aureus and Streptococcus pyogenes on cookers/filters with Hydromorphone-CR, hydromorphone immediate-release (Hydromorphone-IR) or oxycodone controlled-release (Oxycodone-CR). The solutions spiked with S. aureus were heated and the remaining viable bacteria enumerated. RESULTS: S. aureus was detected in 12/87 (14%, 95%CI 8-23%) cookers/filters samples used for injection of Hydromorphone-CR. Hydromorphone-CR was the only opioid associated with greater survival of methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) on cookers/filters when compared to sterile water vehicle control. There was a ~2 log reduction in the number of S. aureus that survived when cookers/filters were heated. CONCLUSION: 14% of all cookers/filters used in the preparation of Hydromorphone-CR were contaminated with S. aureus. Hydromorphone-CR prolongs the survival of MRSA and MSSA in cookers/filters. Heating cookers/filters may be a harm-reduction strategy.


Assuntos
Bacteriemia/microbiologia , Composição de Medicamentos/instrumentação , Endocardite Bacteriana/microbiologia , Contaminação de Equipamentos , Hidromorfona/administração & dosagem , Viabilidade Microbiana , Staphylococcus aureus/fisiologia , Administração Oral , Preparações de Ação Retardada , Injeções , Risco
19.
Mol Microbiol ; 112(4): 1163-1177, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31321813

RESUMO

Toxic shock syndrome toxin-1 (TSST-1) is a superantigen (SAg) produced by Staphylococcus aureus thought to be responsible for essentially all cases of menstrual-associated toxic shock syndrome (TSS). As a potent exotoxin, it is not surprising that S. aureus has evolved multiple systems to control expression of TSST-1. Although the accessory gene regulator (Agr) system is recognized to enhance TSST-1 expression, how Agr regulates TSST-1 is unclear. Using an agr-null mutant, complementation experiments demonstrated that Agr controls TSST-1 expression through the activity of the RNAIII effector molecule. RNAIII can repress translation of the repressor of toxins (Rot) regulator, and deletion of rot increased expression of TSST-1 during the exponential phase of growth. Deletion of agr did not affect rot transcription, but did result in overexpression of the Rot protein, and Rot was also shown to bind and positively regulate the rot promoter. Overexpression of Rot dramatically repressed TSST-1, and Rot bound directly to the TSST-1 promoter. Deletion of both agr and rot in S. aureus returned TSST-1 expression to wild-type levels. This work demonstrates that Agr, although widely considered to be an inducer of TSST-1, has evolved in combination with Rot, to restrict the expression of this potent SAg.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Enterotoxinas/genética , Choque Séptico/genética , Superantígenos/genética , Transativadores/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Enterotoxinas/imunologia , Enterotoxinas/metabolismo , Exotoxinas/imunologia , Regulação Bacteriana da Expressão Gênica/genética , Genes Reguladores/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Choque Séptico/metabolismo , Infecções Estafilocócicas/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Superantígenos/imunologia , Superantígenos/metabolismo , Transativadores/genética
20.
Microbiol Spectr ; 7(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737912

RESUMO

Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.


Assuntos
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade , Superantígenos/imunologia , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Humanos , Filogenia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Superantígenos/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...